
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2002; 40:197–207 (DOI: 10.1002/�d.338)

Numerical evaluation of two discontinuous Galerkin methods
for the compressible Navier–Stokes equations

F. Bassi1;† and S. Rebay2;∗;‡

1Dipartimento di Energetica; Universit�a di Ancona; Via Brecce Bianche; 60100 Ancona; Italy
2Diparimento di Ingegneria Meccanica; Universit�a di Brescia; Via Branze 38; 25123 Brescia; Italy

SUMMARY

This paper presents a critical comparison between two recently proposed discontinuous Galerkin methods
for the space discretization of the viscous terms of the compressible Navier–Stokes equations. The
robustness and accuracy of the two methods has been numerically evaluated by considering simple but
well documented classical two-dimensional test cases, including the �ow around the NACA0012 airfoil,
the �ow along a �at plate and the �ow through a turbine nozzle. Copyright ? 2002 John Wiley &
Sons, Ltd.

1. INTRODUCTION

The discontinuous Galerkin (DG) method is a recently developed higher-order accurate method
which has been receiving great attention by several research groups. DG methods are in fact
particulary well suited for the construction of high-order accurate space discretization of ad-
vective problems on general unstructured grids since they combine two features which usually
appear separately in classical (continuous) �nite element (FE) methods and in upwind �nite
volume (FV) methods. High-order accuracy is in fact pursued by means of high-order polyno-
mial approximations within elements similarly to classical FE methods, and, at the same time,
the physics of wave propagation is accounted for by Riemann solvers as in upwind FV meth-
ods. Additional advantages of DG discretization are compactness (coupling being restricted to
the elements sharing a face) and the possibility to accomodate elements of varying order of
accuracy within the same grid without di�culty, thus opening the way to a straightforward
implementation of h–p adaptive methods.
In the last few years the DG method, originally conceived for purely advective problems,

has been extended to treat advection–di�usion problems and has proved very successful in the
numerical solution of the Navier–Stokes (NS) equations. Several schemes for the discretization
of the viscous terms have been proposed in the literature, such as, among the many available,
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those developed by the authors [1–3], the local DG method of Cockburn and Shu [4], the
method developed by Baumann and Oden (BO) [5–7] and the stabilized version of the BO
method (called NIPG) recently analysed in Reference [8]. See also References [9; 10] for a
general account of DG methods for purely elliptic problems.
The aim of this paper is to present a critical comparison between two of the previously

mentioned methods, namely that introduced by the authors, see e.g. References [2; 3] and the
method of Baumann and Oden described in References [5; 6]. These two methods, hereafter
referred to as BR and BO, respectively, have in fact similar formulations and the BO method
might be regarded as a cheaper alternative to the more involved BR method (see the next
section).
The BR and BO schemes have been implemented in an implicit code which uses the precon-

ditioned GMRES iterative linear system solver with the incomplete LU factorization precondi-
tioner. Their robustness and accuracy has been evaluated by considering simple purely di�usive
linear two-dimensional (2D) problems and the compressible 2D NS equations. In the latter
case, which is the only one here reported for reasons of brevity, several �ow conditions have
been computed, including the �ow around a NACA0012 pro�le for two di�erent �ow condi-
tions, the laminar �ow over a �at plate, and the 2D subsonic �ow through a turbine nozzle.

2. DISCONTINUOUS GALERKIN SCHEMES FOR THE NS EQUATIONS

The compressible NS equations can be written in compact form as

@u
@t
+∇ · fc(u) +∇ · fv(u;∇u)=0

where u∈Rd+2 is the vector of the conservative variables, fc(u) and fv(u;∇u)=Av(u)∇u∈
Rd+2⊗Rd are the inviscid and viscous �ux functions, respectively, d denoting the number of
space dimensions. The weak formulation of the NS equations can be written as

∑
e

[∫
�e
�
@u
@t
d� +

∮
@�e
�n · f(u;∇u) d� −

∫
�e

∇� · f(u;∇u) d�
]
=0; ∀� (1)

in which f(u;∇u)= fc(u)+ fv(u;∇u), and the integral over the domain � has been split into
the sum of integrals over the elements e before integration by parts.
To put in evidence the di�erent role played by the contour integral for internal interfaces

and for boundary sides, the second summation appearing in Equation (1) can be rearranged as
a sum over internal interface integrals plus a sum over boundary side integrals. If � denotes
the union of internal interface sides and � the union of boundary sides, Equation (1) can be
rewritten as

∫
�
�
@u
@t
d�−

∫
�
∇� · f(u;∇u) d�

+
∫
�
[�−n− · f(u−;∇u−) + �+n+ · f(u+;∇u+)] d�

+
∫
�
�n− · f(u∗;∇u∗) d�; ∀� (2)
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The notation (·)− and (·)+ denotes the interface value of any quantity associated to the two
elements sharing a face, and the normal unit vector n− points outward from the element
associated to the values (·)−, and n− + n+ = 0.
The �ux function arguments u∗ and ∇u∗ appearing in the boundary integral are introduced

in order to prescribe the boundary conditions, and are given by

u∗= ub; ∇u∗=∇u−

to prescribe Dirichlet conditions, and by

u∗= u−; n ·∇u∗= n ·∇ub; n⊥ ·∇u∗= n⊥ ·∇u−

to prescribe Neumann conditions. The value of ub for in�ow, out�ow and far�eld boundaries
is computed using a characteristic analysis in the direction n whereby the state ub is obtained
by combining the information associated to the outgoing characteristics computed with the
internal state u− and the prescribed boundary data.
Due to the discontinuous approximation adopted for � and u, the interface integral term

appearing in Equation (2) does not disappear as in standard continuous �nite element meth-
ods. It is therefore necessary to resort to an interface �ux treatment in order to guarantee
conservation and to provide the coupling between neighbouring elements which would be
otherwise completely missing.
For the inviscid NS (Euler) equations, this is in general accomplished by replacing the

physical normal �ux n · fc(u) with a numerical �ux h(u−; u+; n−) analogous to that commonly
employed in upwind �nite volume methods. In our computations we have used the van Leer
�ux di�erence splitting numerical �ux as modi�ed by H	anel.
An interface treatment for the viscous part of the NS is instead not readily available from

FV methods. In previews works the authors have introduced two DG schemes for the NS
viscous terms that rely upon the de�nition of interface functions �± accounting for interface
variable jumps (see e.g. References [11; 2]) or interface viscous �ux jumps [3]. We here
consider the latter scheme which can be written in semi-discrete form as

∫
�
�
@u
@t
d�−
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∇� · f(u;∇u) d�

+
∫
�
(�−h− + �+h+) d�+

1
2

∫
�
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+
1
2

∫
�
(�+ − �−)[(nTAv∇u)+ − (nTAv∇u)−] d�+ 12

∫
�
(�+ − �−)(�+n − �−n ) d�

+
∫
�
�n · fc(ub) d� −

∫
�
(∇�TAvn)−(ub − u−) d�

+
∫
�
�(nTAv∇u)b] d�+

∫
�
��bn d�=0; ∀� (3)
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The auxiliary variables �±n appearing in the interface integral of Equation (3) are de�ned for
each interface side as∫

�±
e

�±�±n d�=−1
2

∫
�f

�±(nTAvn)±(u∓ − u±) d� (4)

while the variable �bn appearing in the boundary integral is de�ned for each boundary side as∫
�−
e

�−�bn d�=
∫
�b

�−(nTAvn)b(ub − u−) d� (5)

The auxiliary variables �n can be therefore computed locally for each internal interface or
boundary side in terms of u±. The expansion coe�cients �i of the function �n(x)=

∑
i �iNi(x)

are in fact related to the expansion coe�cients u±i of the function u±(x)=
∑

i u
±
i Ni(x) by

the expressions

�±i =(M
±
ik )

−1K±
kj (u

±
j − u±j ); �bi =(M

−
ik )

−1K−
kj (u

−
j − ubj ) (6)

in which the matrices M± and K± are given by

M±
ij =

∫
�±
e

�±
i �

±
j d�; K±

ij =
1
2

∫
�f

[�i(nTAvn)�j]± d�

Scheme (3), with the function �n expressed in terms of the function u± according to
Equation (4) or (5), provides a DG space discretization of the NS equations entirely in terms
of the original variable u. The scheme is characterized by a very compact support since the
unknowns associated with an element e are only coupled with the unknowns associated with
the elements which share a face with e. This results in a discretized spatial operator which
can be solved very e�ciently and is therefore very well suited to be used with an implicit
time-integration scheme.
The second DG method for the NS equation here considered is that introduced by Baumann

and Oden (see e.g. References [5; 6]), which bears some resemblance with the BR scheme and
in fact can be obtained from Equation (3) by removing the interface and boundary integral
terms involving the auxiliary variables �n and by changing the sign of the third interface and
a boundary integrals. The BO scheme in semi-discrete form can therefore be written as

∫
�
�
@u
@t
d�−

∫
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∇� · f(u;∇u) d�
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∫
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∫
�
�(nTAv∇u)b] d�=0; ∀� (7)
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The BO scheme is simpler than the BR scheme because of the lack of the terms involving
the auxiliary variable �n but, because of the change in signs, it leads to an unsymmetric
discretization of the di�usion operator (even for a symmetric viscous Jacobian matrix Av).
This is not at all a drawback if the method is used to solve an advection di�usion problem
since the advection part of the problem is already intrinsically unsymmetric. There is however
a small price to pay for the lack of the �n terms, in that the BO scheme, unlike BR scheme,
cannot employ piecewise constant elements for viscous computations.
Schemes (3) and (7) are advanced in time with the implicit backward Euler time-integration

scheme. The linearization of the NS equations is simply accomplished by evaluating all the
Jacobians, both inviscid and viscous, at time level n, thus reducing both the inviscid and the
viscous parts of the NS equations to linear operators in u. The linear systems arising at each
time step are solved by means of the preconditioned GMRES iterative solution algorithm
implemented in the SLAP package available in the Netlib public domain library. A reason-
able compromise between e�ciency and storage requirements has been found by using the
incomplete LU factorization preconditioner.

3. NUMERICAL RESULTS

The accuracy of the BR and BO schemes has been evaluated by considering simple purely
di�usive problems and the compressible NS equations. The results obtained for the purely
di�usive test cases seem to indicate that the BR scheme is more robust and usually more
accurate than the BO scheme. For example, unlike the BR scheme, the BO method cannot
solve the Laplace equation on the unit square with P1 elements (but works with P2 or higher-
order elements). For reason of space we will however concentrate on the results obtained for
the NS computations.
The �rst test case considered is the transonic �ow around a NACA0012 airfoil at an angle

of attack �=10◦, Reynold number Re∞=73 and Mach number M∞=0:8. This is commonly
considered an easy test problem, but we have made it harder than usual by solving it on a
rather coarse grid—the triangulation of a regular distribution of 64× 16 points obtained by
a conformal mapping method—in order to put in evidence possible di�erences of the two
schemes.
Figures 1 and 2 show the Mach isolines computed with linear elements (P1) obtained

with the BR and the BO schemes. The two P1 solutions look very similar, the BO being
slightly more discontinuous than the BR one. This di�erence is more clearly displayed by
Figures 3 and 4, which show an enlargement of the computed P1 Mach isolines near to the
pro�le trailing edge. The di�erent performance of the two schemes is much more evident
when we consider quadratic (P2) elements. The BR scheme converged very easily to steady
state, and the computed Mach isolines around the entire pro�le are shown in Figure 5. On the
contrary we have not been able to compute a P2-BO solution at all. The BO scheme in fact
diverges even when starting from the P2 converged solution obtained with the BR scheme.
The divergence of the BO scheme is originated in the region near to the trailing edge, see
Figure 6, which shows the P2-BO Mach isolines just before the computation failure. These
results seem to indicate that, unlike the BR scheme, the BO interface �ux treatment is not
able to cope with the solution discontinuities if the grid is not su�ciently �ne to allow an
accurate representation of the solution.
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Figure 1. NACA0012 global view, Re=73 Mach isolines, P1 elements, BR scheme.

Figure 2. NACA0012 global view, Re=73 Mach isolines, P1 elements, BO scheme.

Figure 3. NACA0012 trailing edge, Re=73 Mach isolines, P1 elements, BR scheme.
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Figure 4. NACA0012 trailing edge, Re=73 Mach isolines, P1 elements, BO scheme.

Figure 5. NACA0012 global view, Re=73 Mach isolines, P2 elements, BR scheme.

Figure 6. NACA0012 trailing edge, Re=73 Mach isolines, P2 elements, BO scheme.
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Figure 7. Flat plae, Re=106, velocity pro�les tangential to the wall.

The di�erent behaviour of the two schemes is more evident in the second test case—the
computation of the subsonic �ow around a NACA0012 airfoil at an angle of attack �=0◦,
Reynold number Re∞=5000 and Mach number M∞=0:5. The di�culties related to a grid
which is not su�ciently �ne to accurately resolve the solution are here more serious since we
have used the same grid of the previous test case for a higher Reynolds number computation.
In fact the BR scheme performs very well on this problem (see e.g. Reference [3]), while
we have not been able to obtain P1-BO or P2-BO solutions at all, even when using as initial
data the corresponding converged solution computed with the BR scheme.
The third case consists in the calculation of the laminar �ow over a �at plate for a Reynolds

number Re∞=106 and Mach number M∞=0:3. In this case we have used a stretched grid—
containing 1600 triangles and 867 points—in order to verify the behaviour of the BO scheme
in a problem where, despite the very high Reynolds number value, the grid is su�ciently
�ne to accurately resolve the �ow �eld. Figures 7 and 8 [t] show the very good agreement
between the computed velocity pro�les at the plate mid-length obtained with P1=P2-BR=BO
schemes. The results therefore seem to indicate that, for su�ciently re�ned grids, the BR and
the BO schemes give quite similar results.
We have �nally performed test computations of the subsonic �ow through a turbine nozzle

for an inlet angle �1 = 0◦, Reynolds number Re=0:966× 106 and Mis = 0:68 (Mis denotes the
‘isentropic Mach number’, a parameter commonly employed in the turbomachinery literature
to express the outlet pressure of turbine nozzles). The purpose of this test case is to check the
two methods for a complex high Reynolds number �ow of turbomachinery interest using a
stretched grid which is su�ciently �ne to accurately resolve the �ow �eld and which should
therefore be adequate for both the BR and the BO schemes as in the �at plate test case.
The BR and BO schemes performed in fact equally well for this test case, at least if P1
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Figure 8. Flat plate, Re=105, velocity pro�les normal to the wall.

Figure 9. LS89, Re=966000, Mach isolines, P1 elements, BR scheme.

elements are used (we have not attempted the more expensive P2 computation for reasons
of time, but we expect that both method should give similar solutions also for P2 elements).
Figures 9 and 10 show the Mach isolines computed with the BR and BO schemes, and the
solutions look very similar indeed. These results are a further con�rmation that, provided that
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Figure 10. LS89, Re=966000, Mach isolines, P1 elements, BO scheme.

the grids are su�ciently �ne to accurately resolve the solution features, both the BR and the
BO schemes have a very similar performance.

4. CONCLUSIONS

Two recently developed DG methods for the numerical solution of the compressible NS
equations have been described and compared by solving 2D test cases ranging from simple
airfoil computations at very low Reynolds number to the simulation of the subsonic high
Reynolds number �ow through a turbine nozzle.
Our test computations reveal that the performance of the two method is very similar pro-

vided that the grid is su�ciently �ne to accurately resolve the solution. On the contrary, the
performance of the two methods seems quite di�erent if the grid is coarse and the numerical
solution displays signi�cant discontinuities at the element interfaces. In this case, as shown
by the NACA0012 computations, the BR scheme is still able to compute reasonable solutions
when the BO scheme does not. This behaviour needs further analysis in view of the expected
performance of DG methods on relatively coarse and=or strongly non-uniform grids.

REFERENCES

1. Bassi F, Rebay S. A high-order accurate discontinuous �nite element method for the numerical solution of the
compressible Navier–Stokes equations. Journal of Computational Physics 1997; 131:267–279.

2. Bassi F, Rebay S. An implicit high-order discontinuous Galerkin method for the steady state compressible
Navier–Stokes equations. In Computational Fluid Dynamics 98, Proceedings of the Fourth European
Computational Fluid Dynamics Conference, Papailiou KD, Tsahalis D, P
eriaux J, Hirsh C, Pandol� M (eds).
Wiley: New York, 1998; 1227–1233.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:197–207



EVALUATION OF TWO DG METHODS FOR THE NS EQUATIONS 207

3. Bassi F, Rebay S. GMRES discontinuous Galerkin solution of the compressible Navier–Stokes equations. In
Discontinuous Galerkin methods: Theory, Computation and Applications, Cockburn B, Karniadakis GE, Shu
C-W (eds). Springer: Berlin, 2000; 197–208.

4. Cockburn B, Shu C-W. The local discontinuous Galerkin �nite element method for convection–di�usion systems.
SIAM Journal of Numerical Analysis 1998; 175:2440–2463.

5. Baumann CE, Oden JT. A discontinuous hp �nite element method for convection–di�usion problems.
Computational Methods in Applied Mechanical Engineering 1999; 175:311–341.

6. Baumann CE, Oden JT. A discontinuous hp �nite element method for the Euler and Navier–Stokes equations.
International Journal for Numerical Methods in Fluids 1999; 31:79–96.

7. Oden JT, Babuska I, Baumann CE. A discontinuous hp �nite element method for di�usion problems. Journal
of Computational Physics 1998; 146:491–519.

8. Riviere B, Wheeler MF, Girault V. Improved energy estimates for interior penalty, constrained and discontinuous
Galerkin methods for elliptic problems. Part I, Technical Report 3 Computational Geosciences, 1999.

9. Arnold D, Brezzi F, Cockburn B, Marini D. Discontinuous Galerkin methods for elliptic problems. In
Discontinuous Galerkin methods: Theory, Computation and Applications, Cockburn B, Karniadakis GE, Shu
C-W (eds). Springer: Berlin, 2000; 89–101.

10. Arnold D, Brezzi F, Cockburn B, Marini D. Uni�ed analysis of discontinuous Galerkin methods for elliptic
problems. SIAM Journal of Numerical Analysis 2002 at press.

11. Bassi F, Rebay S, Mariotti G, Pedinotti S, Savini M. A high-order accurate discontinuous �nite element method
for inviscid and viscous turbomachinery �ows. In Second European Conference on Turbomachinery Fluid
Dynamics and Thermodynamics, Decuypere R, Dibelius G (eds). Technologisch Instituut: Antwerp, 1997;
99–108.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:197–207


